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A Modified Hooke-Jeeves Method
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Abstract: This paper is concerned with the solution method to uncostrained optimization problems without using deriva-
tives. The objective function value may be increasing at the acceleration step in the standard Hooke-Jeeves method with
discrete steps (HJMDS) for solving unconstrained optimization problems. The acceleration step of the standard HJMDS is
modified such that the nonincreasing in the objective function value can be guaranteed in the acceleration step of the modi-
fied Hooke-Jeeves method with discrete steps (MHJMDS) given in this paper. Then, a new algorithm using the MHJMDS
is designed. Numerical results show that the MHJMDS is more efficient than the standard HIMDS because of the require-
ment of a very small number of function evaluations.
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Introduction

Consider the following unconstrained optimization problem

(P min f(x)

rER"
where f:R"—>R' is a function of n variables (without the requirement of continuously differentiability). There

exist a number of methods that do not use derivative-based information and can be used to solve Problem (P)
successfully, for example, the cyclic coordinate method™', the method of Hooke-Jeeves using line searches™ ,
the method of Hooke-Jeeves with discrete steps™®’, the method of Rosenbrock using line searches"* , the meth-
od of Rosenbrock with discrete steps, and so on. Among the above methods, the Hooke Jeeves method is

L] In [4], the Hooke-Jeeves direct search method is im-

very efficient for solving some optimaztion problems
plemented and is demonstrated to solve a class of problems in the geometric optimization of yield-line patterns
efficiently. In [5], a new Hooke-Jeeves based Memetic Algorithm (HJMA) is given for solving dynamic opti-
mization problems. In [6], a revised Hooke-Jeeves algorithm is proposed to solve the optimization model of
the trajectory of horizontal well with perturbation. In addition, a novel hybrid optimization approach, which is
based on teaching-learning based optimization (TLLBO) algorithm and Taguchi’s method, is presented and the
results obtained by the proposed approach are compared with those of the Hooke-Jeeves pattern search meth-
od, particle swarm optimization algorithm, and so on'™. A unified convergent theorem is given for a class of
direct scarch techniques which is a class of descent methods with fixed step size and contains the Hooke-Jeeves
technique, the simplified and varied Hooke-Jeeves techniques, and the axis directional search technique as its

[8]

special cases In the present paper, we consider the standard Hooke-Jeeves method with discrete steps (ab-
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breviated as HIMDS). We observed that the objection function value may be increasing at the acceleration step
in the standard HIMDS. Basing this observation, we will modifiy the acceleration step of the standard HIMDS
such that the non-increasing property in the objective function value can be guaranteed in the acceleration step

of our modified method.

1 The Algorithm

The standard Hooke-Jeeves method with discrete steps (HJMDS) is as follows.

Algorithm HJMDS Initialization Step Let d, .-+, d, be the coordinate directions, choose a scalar e=>0 to be
used for terminating the algorithm. Furthermore, choose an initial step size A™e, and an acceleration factor
a—>0. Choose a starting point x,, let y,=x,, let k/=j=1, and go to the Main Step.

Main Step Step 1 If f(y,+Ad;)<<f(y;), the trial is termed a success; let y;1, =y, TAd;, and go to
Step 2. If, however, f(y,+Ad;)=f(y,), the trial is deemed a failure. In this case, if f(y,—Ad;)<f(y;),
let y;s1=y,—Ad,, and go to Step 2; if f(y;—Ad;)=f(y;), let y;.1=y;, and go to Step 2;

Step 2 If j<<n, replace j by j+1, and repeat Step 1. Otherwise, go to Step 3 if f(y,+,)<<f(x,), and go
to Step 4 if f(y, )= (x5

Step 3 Let x4y =7y,+1» and let y, =z, +a(x,+1 —x,). Replace £ by £+1, let j=1, and go to Step 1;

Step 4 If A<<e, stop; x; is the prescribed solution. Otherwise, replace A by ? Let yi=x,» Tpi1 =24 »

replace £ by £ +1, let j=1, and repeat Step 1.

It is clear that the objective function value may be increasing at step 3 (i. e. , the acceleration step) of the
Main Step in Algorithm HJMDS and it may lead to reduce the effectiveness of algorithm. Based on this obser-
vation, we focus on modifying the Step 3 in Algorithm HJMDS. Our modified Hooke-Jeeves method with dis-
crete steps (MHJMDS) is as follows.

Algorithm MHJMDS Initialization Step  This step is same as the Initialization Step of Algorithm
HJMDS.

Main Step Step 1 This step is also same as the Step 1 of Algorithm HJMDS;

Step 2 If j<<n. replace j by j+1, and repeat Step 1. Otherwise, go to Step 3 if f(y,+,)<<f(x:), and go
to Step 7 if f(y,r1)=f(x)s

Step 3 Leti=1, x4+1,=y,+1, and let y, =2+, Tz, —2x)» go to Step 4 if £(y,)<<f(x44,), and go to
Step 5 if fly)=F(xpi1)s

Step 4 If i=m, go to Step 8 and let y, =y, 244, =y, ; Otherwise, if i<lm.,let y;;, =2y, — 2,43 in this
case, if f(y 1 )<<f(y,), let yy =1y, ; replace : by i+1, and repeat Step 4; if f(y,;1)>f(y,), go to Step 8;

Step 5 If i=m, let yy =2+, go to step 8. Otherwise, if i<lm, let y, :%(yl +x,.1). In this case, if
Fy)<<f(xps1)» let yy =731, and go to Step 8. However, if f(y,,)=f(x,+1)» go to Step 6;

Step 6 If f(y, )< f(y,), let y, =y, and replace i by i+1, go to Step 5. Otherwise, if f(y,;)>Ff(y),
1et V1= Xp+19 80 to Step 8.

Step 7 If A<(e, stop; x is the prescribed solution. Otherwise, replace A by % Let yiy=x4» Zpr1 =X s

and go to Step 8.

Step 8 Replace £ by £+1, let j=1, and go to Step 1.

It is easy to see that the objective function value can not increase in the acceleration Steps 3~6 of Algo-
rithm MHJMDS.

Remark The proof of Algorithm MHJMDS’s convergence is similar to that of Theorems 7.1 and 8.1 in
Ref. [8]. Here we omit this proof.

2 Numerical experiments

Consider the following problem"
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(TP) minimize (x;,—2)'+ (x;, —2x,)°
We first solve the Problem (TP) using Algorithm HJMDS. The parameters « and A are chosen as 1. 0 and
0.2, respectively. Tab. 1 summarizes the computations starting from the initial point (2.0, 3.0). Here (S)
denotes that the trial is a success and (F) denotes that the trial is a failure. The procedure is stopped here with

the termination parameter e=0. 1.

Tab.1 Summary of computations for algorithm HJMDS

. A X Vi 4 v, TAd; v —Ad;
S ) S Sl +Ad) Sy —AdD
1 0. (2.00,3.00) (2.00,3.00) (1.0,0.0) (2.20,3.00) (1. 80,3.00)
16 16 14. 441 6 (S) 17.641 6 (F)
(2.20,3.00) (0.0,1.0) (2.20,3.20) (2.20,2.80)
14. 441 6 17. 641 6 () 11. 561 6 ()
2 0. (2.20,2.80) (2.40,2.60) (1.0,0.0) (2.60,2.60) (2.20,2.60)
11. 561 6 7.865 6 6.889 6 (S) 9.001 6 ()
(2.6,2.6) (0.0,1.0) (2.60,2.80) (2.60,2.40)
6. 889 6 9.129 6 () 4.969 6 (S
3 0. (2.60,2.40) (3.00,2.00) (1.0,0.0) (3.20,2.00) (2.80,2.00)
4.969 6 2 2.713 6 () 1.849 6 (S
(2.80,2.00) (0.0,1.0) (2.80,2.20) (2.80,1.80)
1.849 6 2.969 6(F) 1.049 6 (S
4 0 (2.80,1.80) (3.00,1.20) (1.0,0.0) (3.20,1.20) (2.80,1.20)
1. 049 6 1. 36 2.713 6 (F) 0.569 6 (S
(2.80,1.20) (0.0,1.0) (2.80,1.40) (2.80,1.00)
0.569 6 0.409 6 (S 1. 049 6 (I
5 0. (2.80,1.40) (2.80,1.00) (1.0,0.0) (3.00,1.00) (2.60,1.00)
0.409 6 1. 049 6 2.00 () 0.489 6 (S
(2.60,1.00) (0.0,1.0) (2.60,1.20) (2.60,0.80)
0.489 6 0.169 6 (S) 1.129 6 (I
6 0 (2.60,1.20) (2.40,1.00) (1.0,0.0) (2.60,1.00) (2.20,1.00)
0.169 6 0.185 6 0.489 6 (F) 0.004 16 (S
(2.20,1.00) (0.0,1.0) (2.20,1.2) (2.20,0.80)
0.041 6 0.041 6 (S) 0.361 6 (F)
7 0. (2.20,1.2) (1. 80,1.20) (1.0,0.0) (2.00,1.20) (1. 60,1. 20>
0.041 6 0.3616 0.16 (S) 0.665 6 (F)
(2.00,1.20) (0.0,1.0) (2.00,1.40) (2.00,1.00)

0.16 0. 64 () L1743 % e—=29(S)

8 0. (2.00,1.00) (1. 80,0. 8 (1.0,0.0) (2.00,0.80) (1.60,0.80)
2.174 3% e—29 0.041 6 0.16 (F) 0.025 6 (S
(1.60,0.80) (0.0,1.0) (1.60,1.00) (1.60,0.600)
0.025 6 0.185 6 (F) 0.185 6 (F)
9 0. (2.00,1.00) (2.00,1.00) (1.0,0.0) (2.10,1.00) (1.90,1.00)
2.174 3% e—29 2.174 3% e—29 0.010 1 () 0.010 1 (F)
(2.00,1.01) (0.0,1.0) (2.00,1.10) (2.00,0.90)

2.174 3% e—30 0.04 (I 0.04 ()

Now we solve the problem (TP) using Algorithm MHJMDS. The parameters a and A are also chosen as
1.0 and 0. 2, respectively, and the parameter m is chosen as 4. Tab. 2 summarizes the computations starting
from the initial point(2.0, 3.0). The meanings of the notations “S”, “F” are the same as the above. The ter-

mination scalar € is also chosen as 0. 1.
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Tab.2 Summary of computations for Algorithm MHJMDS

f A X V; 4 v tAd; ‘yJ*A d;
f(x) fCy) fly;+Ad) fly;—Ad)
1 0.2 (2.00,3.00) (2.00,3.00) (1.0,0.0) (2.20,3.00) (1.80,3.00)
16 16 14. 441 6 (S) 17.641 6 (F)
(2.20,3.00) (0.0.1.0) (2.20,3.20) (2.20,2.80)
14.441 6 17.641 6 (F) 11.561 6 (S)
2 0.2 (3.00,2.00) (3.00,2.00) (1.0,0.0) (3.20,2.00) (2.80,2.00)
2 2 2.713 6 (F) 1. 849 6 (S)
(2.80,2.00) (0.0,1.0) (2.80,2.20) (2.80,1.80)
1.849 6 2.969 6 (F) 1.049 6 (S)
3 0.2 (2.00,1.00) (2.00,1.00) (1.0.0.0) (2.20,1.00) (1.80,1.00)
1.177 49 e—30 177 49 % e—30 0.041 6 (F) 0.041 6 (F)
(2.00,1.00) (0.0,1.0) (2.00,1.20) (2.00,0.80)

177 49 % e—30 0.16 (F) 0.16 (F)
4 0.1 (2.00,1.00) (2.00,1.00) (1.0,0.0) (2.10,1.00) (1.90,1.00)
1. 177 49 e—30 177 49 % e—30 0.010 1 (F) 0.010 1 (F)
(2.00,1.00) (0.0.,1.0) (2.00,1.10) (2.00,0.90)

1. 177 49 % e—30 0.04 (F) 0.04 (F)

The number of function evaluations is 38 and 24 using Algorithm HJMDS and Algorithm MHJMDS, re-
spectively. It is clear that Algorithm MHJMDS is more efficient than Algorithm HJMDS,
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WEAXFRLA SR GEERMEL A KA MBS T &, T KT A KA A B W A B HF B 47 7 Hooke-Jeeves 7 3%, B
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Jeeves 7 i th i % 8 F 9 47 7 Hooke-Jeeves 7 3% E 2 4 &,
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